AD-A137 566 A MICROCOMPUTER BASED GENERAL LINEAR PROGRAMMING 1/1
OPTIMIZATION PACKAGECU) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA D W THEUNE SEP 823

UNCLASSIFIED F/G 9/2

NL

o
EEEE

Ll P
——— - m Ig
Bl 20

m“ A
_— .8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

A R A

Py

TERKTAN. EEE

oYY

g

R

PR R

sty T R e P

e
Ry o

e
N

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

WA137506

A MICROCOMPUTER BASED
GENERAL LINEAR PROGRAMMING
OPTIMIZATION PACKAGE

by

Donald W. Theune

September 1983

. | Thesis Advisor: G. G. Brown
——————— ot
Approved for public release; distribution unlimited.

DTIC FILE CORY 8402° 6 083

Toam e % % g) 25y, * ™ 3 b B? NP Tt A IR S LY .
"4'-“‘"‘,"““'0‘ RRAN AT o X f v ‘,,, s LAY FhaY,

v, ." La N PR A S S G R
N \;.,.-.sﬁ\.\\ 5

S

L R Rt el i g G AC IS S g At g ¢l A A i S R e e A A i IS gt e i B e i i s o e o as soe B o T
P L AT R .. R N e N L e e

e NCLASSIEIED
SECUMTY CLASHPICATION OF THIS PAGE (When Date Bnrored)

- READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T RUPSRY RUGSUR T GOVY ACCEISION NO| 3. RECIPIENT'S CATALOG NUMBER
A3 5e
& TITE (e Subsitie) S. TYPE OF REPOART & PERMIOD COVERED

. . Master's Thesis;
A Microcomputer Based General Linear September 1983

Programming Optimization Package
S. PERFOAMING ORG. REPORYT NUMBEAR

&Ww,, " 8. CONTRACY OR GRANT NUMBER(s)

Donald W. Theune

Naval Postgraduate School
Monterey, California 93943
1. CONTROLLING OFFICE NAME AND ADDRESS 13. REPOAT DATE
Naval Postgraduate School September 1983
Monterey, California 93943 13. NUMBER ;; PAGES
] A] Trom ling Office) | 3. SECURITY CLASS. (of fhie report)
Unclassified

[T8a. DECL ASSIFICATION, GOWNCRADING]
scn&'ouu

T SRVRTGViSk TYATERENTY (ol il Reper)

Approved for public release; distribution unlimited.

By~ — T e e o r———
7. OISTYRISUTION STATEMENT (of the asdotrast enten.d in Bicek 30, I different irem Repert)

m-m“umumunmmﬂ

microcomputer
linnear programming
optimization

m-m“lmumubummoo

~—-—’>'1‘he importance of mathematical models as tools in
decision making has motivated increased interest in that
theory and its implementation. This paper describes
fundamental techniques of linear programming which have
been combined to offer a microcomputer based optimization
package. The package is machine portable and will accept
input from files created by other programs. Thus the _ >, ' |

00 ‘:0..” W3 soimon oF 1 oV 68 15 OssoLETR UNCLASSIFIED
$/M 0102- L 014- 6601 1 ecOmTvECAmvICATION OF THIS PAGE (When Dera Bnteree:

..........
............

.......
.....
.............
..
.........

w0, T e, W, L A e S A A RS I AR i RN R A N

N
N UNCLASSIFIED
:’:‘_ SMCUMTY CLASRPICATION OF THIS PAGE (Yhen Dese Entered

A

! g 20. ABSTRACT (Continued)

&

i package affords the opportunity to build a mathematical
e programming system based on its ability to solve bounded
S variable linear sub-problems. Written in JRT PASCAL 3.0
N and implemented on a portable, 8-bit microcomputer
(KAYPRO-II), this package places the fundamental tool of
N optimization in the office, classroom and home.

T

=i 2
f&\ _
’,"1’ R A
) e
2 ‘
B - 1
4 o 1
. St wl .:]
' RRITTIRY B o4 UG |
- * - 3
Toelr tutiend i
IS 1
DRI S R P X !
e v e
, T R o -
|
o ;
"’ A/ \ | {
\
r.“' [
<
S
~\"!
"
I -
hasusenmmE——
3/M 0102 LK 014- 4401 UNCLASSIFIED
2 SECURITY CLASHIPICATION OF THiS PAGE(Wien Date Bwered)
R T M XAl UL g A o .1 S TR R LTS T T TR X RS A Sy '..,-_'_. R T 2 L Coar e
: S AN O) SRR 0 ST L PR T A A

ARASIENE AL SRR EADLEEEL AR A CREM A R BT e e e A i e i o dar A A e e B S T

Approved for public release; distribution unlimited.

A Microcomputer Based
General Linear Programming
. Optimization Package

by

AT AT

B At i v

Donald W. Theune
Major, United States Marine Corps
B.A., Lakeland College, Sheboygan, Wi., 1978

P A 2 o

Submitted in partial fulfillment of the
requirements for the degree of

Ry

. MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the
NAVAL POSTGRADUATE SCHOOL
September 1983

Author: '

Approved by:

pge” W

econd Reader

han, Department o; ééorations Research

LI I L X 2 DI W A ST AW

Y
by
W

ABSTRACT

The importance of mathematical models as tools in
* decision making has motivated increased interest in that
theory and its implementation. This paper describes funda-
* mental techniques of linear programming which have been
] combined to offer a microcomputer based optimization |
package. The package is machine portable and will accept
input from files created by other programs. Thus the
. package affords the opportunity to build a mathematical
programming system based on its ability to solve bounded
variable linear sub~problems, Written in JRT PASCAL 3.0
and implemented on a portable, 8-bit microcomputer (KAYPRO-
'II), this package places the fundamental tool of optimigza-

tion in the office, classroom énd home.

R A - .
AN O

IR). : '&;J&i‘ﬁ::':;'}:'_\:f-:f:\

37
3,

TABLE OF CONTENTS

; ' I. INTRODUCTION ~=====e==e ~—————e -— 9
; y II. PROBLEM REPRESENTATION -=eecececcccmaccee= - 14
A. CANONICAL FORM -- S 14
; B. BASIS DEFINITION —=m=-ceseeecceemcemee—e——- s—- 15
C. MAXIMUM VS. MINIMUM ==ecceeccemmcecacacencan= 16
D. SLACK LOGICAL VARIABLES --- - 16
; E. SURPLUS LOGICAL VARIABLES - ~-- 17
g . F. ARTIPICIAL VARIABLES -- - - 18 .
; G. VARIABLE BOUNDS - 18 ‘
g H. VARIABLES WITH UNRESTRICTED SIGN =—-—========= 19
III. ALGORITHM SELECTION -==w-=- cmmmmeeee 21
A. A GENERAL SIMPLEX TECHNIQUE 21
l. Rewrite (LPC) in Terms of Basic
Solution ~-=-- ——— - 22
2. Basic Solution - 22
3. Priceout -~ 23
4. Ratio Test - 24
i S. Reflection 25
6. Update 26
B. TWO PHASE SIMPLEX -- 26

C. A BOUNDED VARIABLE SIMPLEX TECHNIQUE -=-=-=---- 28

1. Transformation of Variables - 28
. 2. The Algorithm -<-=- - 30
S

RN W g T g - - . . N) .
DI I P P s P N PR o DATIIRY D AL A" AT T T, N |‘ q' LA AN

INVERSE ——~-c==== e ——— 32

1. Advantages e 32

g i 2. Elementary Matrices --=-—==-- m——————————— 33
g - E. DEGENERACY AND CYCLING ==--=—==ececc—ecaccec- 35
. F. REINVERSION ----- e em e e 39
f{; IV. IMPLEMENTATION ---- - -_— 44
i: A. DATA STRUCTURES =~=-——ccccccecccccccccacacacax 45
| B. INPUT =~~=~eec==== ———— —— 47

2 1. TYPEPROB ——— —— 48
2. MODPROB --- - - 51
‘ 3. READPROB ~==reccccacwa= 52
% . C. THE PROBLEM SOLVER - 53
* 1. SIMPLEX - ~—— -- 53
2. PHASEI - - - -— 53

i 3. BTRAN ~=-m-u- S 54
ﬁ 4. CHUZQ - - - 54
S. FTRAN ~- 54

6. CHUZP ———— - 54

7. PIVOT -- - . 55

j" '8. REINVERT - 55
8 D. OUTPUT -- 55
V. CONCLUSIONS AND RECOMMENDATIONS ---- 57
APPENDIX A: EXAMPLE INPUT FILE - 60
* APPENDIX B: INTERACTIVE SESSION -~ 62
d - APPENDIX C: EXAMPLE PROBLEM FILE ~ -- 68

6

R S N -
RS R PO NG S A j

1y piiiad ol T T Nl e oL (W SN RN LRI Rt A St N AR I i a9 N ol
¥

MRS ADA Al Sl et rvvrzﬁ

APPENDIX D: BTRAN PROCEDURE LISTING ==ve=e=————c—ec=a-- 69
APPENDIX E: OUTPUT LISTING FOR LP PROBLEM SOLVER ~~--- 70
LIST OF REFERENCES - e 72

é\ INITIAL DISTRIBUTION LIST =====-===-e—eceeeceemeca—————— 73

b
»

g B .

et e

-
),
. -
A Y
Y
Yay
o
"
£
-
*
.

" T~ I P R R il i e T A S T Sy v,
S Bi_‘\ "3 A’\j L LGy O A PN ‘., v,

[A halnft

SAhe Die A s hi R el Sl B4 Sk Bad T A AN NN ACE SN DAL A St S A AR AR AR s S T - i A AR e Sadipadr A S dr i gt Joes .o o aen |

.........................

ACKNOWLEDGEMENT

I am grateful to Professor Larry Bodin of the University
of Maryland for his patience and help in the earliest
stages of this effort. Problem formulations provided by
Professor Bodin aided immeasurably in decreasing debugging
time associated with the implementation of algorithms.
My thanks, also, to Major Lee Dewald, USA, and Lieutenant
J.S. "TEX" Moore, USN, whose ingsights and interest in the
topic led to a more precise understanding of the theory.
I would like to express a sincere thank you to Professor
Jerry Brown without whose guidance and direction this

project would never have been completed. Finally, I wish

to thank my wife Julia for her patience and understanding,

and my children Jason and Jennifer for their cooperation.

.............

S bl A N A AOA AAAANE L SR LR BV T RN AR SN A s a A /A /I i gt M S it ot Soa Jhon g i e it sk i 2o e | b &)

I. INTRODUCTION

In the past 35 years, thousands of papers have been
. publigshed dealing with decision theory and optimization.
In the development of that theory, the study of solutions
to systems of linear inequalities has played a large role.
The importance of mathematical models as tools in decision-
making has motivated increased interest in that theory
and its implementation.

. Linear programming is the minimization of a linear

function subject to linear inequality constraints [Ref. 1].
The techniques applied to this area of optimization are

rooted in the theory of solutions to gystems of linear inequali-

ties and the mathematics of linear equation theory. Appli-
cations of this theory provide insight into the problem of
minimizing a convex function whose variables must satisfy a
system of convex inequality constraints. The applications
also provide a framework for extending problems in mathe-
matical statistics and a foundation upon which are built
modern algorithms for the solution of optimization problems
whose variables are integer valued (integer programming)

or whose constraints are non-linear (non-linear programming).

Due to this wide range of applications, the availability of

: efficient implementations of linear programming algorithms
has become important. Routines to solve a wide variety of

»TETNTe e

Ta T & T BT s T Ve TV ¥ ""'."".‘I;."Q_;‘I'"".'__¢~'.‘I‘_";T'."'.Y:‘;'_'-”.'q PRCEF L RN R it BAN J P e Ate J v, AP AN A Shn JhAn i Jhun Jht0 S A It b |

problems have been developed for use on mainframe computers.
Many competitive businesses and industries routinely rely
on such programs to assist in day-to-day corporate decision
making. These systems tend to be expensive to operate due
to overhead costs associated with the operation of large-~
scale computer hardware and the training of\operators of
time-share systems.

The microcomputer is fast becoming a viable alternative
to time-share mainframes as a source of computational power
for small businesses and individuals. Rapid advances in -
computer technology, especially in micro-electronice, have
made possible the routine use of many of the basié, theoreti-
cal algorithms which were previously viewed as too complex
and inefficient. The incorporation of these advances into
the manufacture of "micros" and the development of micro-
computer-based programming languages responsive to user
needs have only recently allowed for implementation of
fundamental optimization tools on the relatively inexpensive
microcomputer. Obvious trade-offs arise in the comparison
of "micros” to mainframes. While the speed at which large
computers accomplish computational results is surely their
greatest asset, so are size and the costs of hardware and
software their greatest liabilities. On the other hand,
the relatively inexpensive one-time purchase price of
the microcomputer and its associated software must be

somewhat offgset by its slower computational speed and smaller

memory size.

o T S Shte Avin ven b) a0 e o 4 "t.-"

.. Another disadvantage of the microcomputer is that effi-
cient, "user-friendly" optimization systems are not cur-
rently available for the microcomputer environment. This
is possibly due, in part, to the intense effort required to

. develop sophisticated microcomputer software in this severely
restricted environment. While a few basic implementations
of linear programming optimization theory are beginning to
appear, no reference to any work of consequence has been
found in the literature. Further, it is not clear that the
advantages of the microcomputer have been fully exploited
in those few systems currently being released. In fact it
is apparent that so-called microcomputer based systems are
usually weaker versions of systems de:.igned and implemented
for mainframes from simple textbook descriptions and modi-
fied for use on a microcomputer; the elementary theory
incorporated limits problem gize and solution efficiency

due to insensitivity to the strengths and weaknesses of the

target computer. Few of the sophisticated features of widely
available commercial, mainframe optimization systems have
been transferred to "micros".

b The following is an attempt to amalgamate current

5%

35 technology and fundamental theory regarding linear pro-

i gramming and to create an easy-to-use, interactive computer
%ﬁ . program with wide applicability on current state-of-the-art
gz microcomputers. The system described is designed for a most

i ' restrictive "eight-bit" microcomputer in the hope that

A Nl M A 2 I D T I it e IO T Ot s A A A A A Bk Sl AR BMACAA R AR A A A A Sd sl Sod Mnd)
- . S, . A e e ORI R »_'.‘\"z

e

upward compatability with larger machines and new-generation
computers will allow more advanced capabilities as technology
admits in the future. The algorithms described and imple-
mented range in complexity from simple algebraic manipula-
tion, as in the simplex pivot, to the more involved technique
of the preassigned pivot procedure initially developed by
Hellerman and Rarick [Ref. 2]. Subtle modifications have
been made to many of the basic algorithms to allow implemen-
tation on the microcomputer. Other algorithms have been
embedded in the code and are activated where required, e.q.,
a new modification of Bland's first rule for the avoidance
of cycling in the presence of degeneracy [(Ref. 3]. 1In the
section dealing with the use of the program, the input and
output routines are discussed.

The package employs a reasonable number of "large-
scale" optimization features, including sparce problem repre-

sentation and product form inverse. The limits on the size

of problems that these programs can cope with is principally
dependent on the size and bit density of the off-line stor-
age available and the size of internal random access memory
(RAM) . Numerous vectors are implemented whose dimensions
are problem dependent and allocated at run-time, providing
true dynamic dimensioning. "In core, out of core" operation
maximizes RAM utilization in a fashion reminiscent of second
i generation mainframe computers two decades old.

JRT Pascal version 3.0 is used to implement the theory

discussed in this thesis. The program modules are compiled

12

...... Lo .
PO D Y . et e T.T " . .
. IR ' .'- .-._ EAEIA A _:-_‘ B
Mot e A e e

)
/
>

{30

on the KAYPRO II, eight-bit microcomputer. The associated

. ,_
R I

algorithm is designed based on speed (number of calcula-
tions required), overhead required, available programming

language constructs, and simplicity of theory; usually in

o PO el A o

that order.
Wide~spectrum stress testing of the package has not

been performed due to time constraints.

%

i <o .

;

3
X
&

NN

3 13

-~
TN TRV AR Ty g U Ty Ty W IO R R AR
L) B> & » .'\i
P,

. : (R O W T

AWE P T AT N

II. PROBLEM REPRESENTATION

In this chapter we define a canonical problem format
. (LPC) and the terms to be used throughout the development
of the algorithm. We then show that, given any problem formu-
lation, (LPF), an equivalent, canonical form may be achieved
through the application of simple transformations and/or
~ the introduction of additional logical variables such that
a solution to (LPF) can always be constructed from an
equivalent solution to (LPC).

Any linear program is formulated as follows:

(LPF) minimize (or maximize) cx
subject to' linear equality or inequality

constraints with variables,

x. > 0 non-negative,

x, < 0 non-positive, or
j unrestricted in sign ("free").
A. CANONICAL FORM

The algorithm developed in this thesis is designed to
provide optimal solutions to linear programming problems

- stated in the following "canonical"™ form (assuming an opti-

mal solution exists):

14

[y

VS T R AR SRR E R CTCLY
PSP A N I SRR ENE Y SNy

Dt

(LPC) minimize cx ("objective function")

subject to
Ax = b, ("constraints")
0 < x < UB, (UB are "upper bounds")
b > 0; ("non-negative right

hand side")

where x is an n-dimensional column vector, ¢ is an n-
dimensional row vector, A is an mx n matrix of technologi-
cal coefficients with n > m, and b is.an m-dimensional
column vector. All (LPF) forms may be converted to the

(LPC) form as described in the following sections.

B. BASIS DEFINITION

A basis, denoted by B, is any set of m linearly
independent columns of A. An initial basis, By, is the
first basis considered in the iterative solution of (LPC).
It will be convenient to construct an initial basis, during
the process of transforming (LPF) to (LPC), such that
this initial basis consists of unit vectors, i.e., By, = I.
In so doing, the inverse of the initial basis, Bgl, is
identically I and its "product-form®, the implicit repre-

1

sentation of B; as the product of elementary transforma-

tion matrices, is trivial.

15

e

NN

S

s

© T el

LA Al

e e 2

W LT T

<N T L

Ty VoV

C. MAXIMUM VS. MINIMUM

Suppose that the problem (LPF) is stated as:

maximize cx

s.t.

canonical form (LPC) constraints.

Since (LPC) requires formulation as a minimization
it will be necessary to transform the objective function,
maximize cx. The resulting, equivalent minimization

function is:
minimize (-c)x; we redefine c accordingly in (LPC).

Similarly, for each bi < 0 we can perform a transforma-

tion to replace with bi > 0 as follows:

i. multiply row i by -1.
ii. replace the right hand side element so that
i <+ -bio
D. SLACK LOGICAL VARIABLES
We must be concerned with transforming inequality
constraints to the canonical form. Consider the (LPF)

problem with the "ith" constraint of the following form:

ailxl + aizxz + e + ainxn < i

16

B I, o e YR aAY

g et e ey

L 8 B sl

PR o

P

I

L

To convert this problem to canonical (LPC) form we

rewrite the constraint as follows:

8;9%) + 3 %, + ...+, x +s8, = b, s. >0,
where the non-negative variable, S introduced is referred
to as a "slack variable", or "logical plus type". Note
that if some x satisfies the (LPF) constraint, it also
satisfies the (LPC) constraint and vice versa. The slack
variable simply takes on the value required to maintain

the equality in (LPC).

E. SURPLUS LOGICAL VARIABLES

Suppose that the ith constraint from (LPC) is of the

form:
then
a;1% + a;,%, + oo+, x -wW, = bi' w, 2 0.
The w, variable appended here is called a "surplus

i
variable” or "logical minus type"” and again, any x satis-

fies the (LPF) form if and only if it satisfies the (LPC)

form. Here v, takes on the value required to maintain

the equality.

17

. .
AP

LA v

O B 5T

v ¥l -

© ol W e gl -

o

sl

It ey

F. ARTIFICIAL VARIABLES

Considering the introduction of the variable, w, into
(LPC) for the previous case, we find that its coefficients
form the negative of the i-th unit vector. We would prefer
to have available an initial basis composed exclusively
of positive unit vectors. By construction we will add a
second, non-negative variable to the previous equation as

follows:

ailxl + a; 2%,y + ... + 8inXn - W3 + z, = bi' i

The variable introduced is called an artificial varia-
ble. Note that z; > 0 in (LPC) implies that the i-th
constraint in (LPF) is not satisfied. However, if a solu-
tion to the new problem can be found such that z; = 0, thenm
the solution to the new problem will be consistent with
the solution to (LPF).

By similar convention we introduce an artificial varia-
ble into equality constraints of (LPF) to produce an initial
identity basis for (LPC). Note that the values of artificial
variables in (LPC) gauge the magnitudes of respective con-

straint violations in (LPF).

G. VARIABLE BOUNDS

vVariable bounds are elementary constraints of the form

18

e o e R o T e T Y e e

{ e

Frequently, such constraints are present in (LPF) and can

AP AT e Y

A - e -

be expressed as variable bounds in (LPC). Variable bounds
are accommodated with great efficiency in the bounded

variable simplex method, but they must be identified

MY MMEET)y

explicitly prior to the solution.
As a further simplification, the lower variable bounds

may be changed to be zero by the simple transformation ‘

2 AR

(change of origin):

(LPC) <« (LPF)

i RS

. - LB, .,

: *3 M j

2> -

¥

By The resulting variables in (LPC) have
g 0 < xy < MUBy = UBj - LB,.
A

) Recovery of the final solution to (LPF) from a solution to
4 (LPC) is immediate by reversing the transformation:
(LPF) <« (LPC)

* x + LB

> I B

R - H. VARIABLES WITH UNRESTRICTED SIGN
An easy technique available to deal with "free", or

"unrestricted variables" replaces the free variable with

19

N N GNP L NN S A AN R A A AR

il
-"

.t 'iﬁ

the difference of two non-negative surrogates, xj = uj - Vj‘

Although this technique introduces an additional variable,

*
D

the overhead cost is only the duplication of the coefficients
of x to create the additional variable, and a final trans-

formation to recover the resulting value of Xy which is |
relatively inexpensive. Storage overhead for the new j

variable is of little consequence due to the use of the

"out-of-core" storage of non-zero problem elements.
All complications in (LPF) may now be handled by standard

elementary problem transformations to produce (LPC). Thus

~
.
.
“
,“‘:.
A

;
M

X may be unrestricted in sign, and arbitrary inequality
constraints can be accommodated so that any formulation may

be easily modified to produce (LPC).

e < :‘—L
.

20

el
.LLAAA

| B

A

-

A

RS

- ¥
:

‘S
&

A

&
i

V7

S S
K Sy s b

R R R A e s s s e T R R o oo,

III. ALGORITHM SELECTION

Once the problem formulation has been transformed to
canonical form (LPC), an algorithm must be developed, or
adapted, that provides the technique required to solve
the (LPC) problem. This algorithm must be both efficient,
and sympathetic to the eccentricities of the small computer.
In keeping with common practice on microcomputers, we adopt
a straightforward, elementary textbook approach fo the
mathematical justification of our simplex algorithm. The
implementation is necessarily more sophisticated. The
general algorithm that will be discussed here is the two-
phase, revised simplex method (simplex method using multi-
pliers) [Ref. 1l]). sSpecifically, the non-zero elements of
the product form of the inverse and all non-zero problem
elements will be stored in two random access diskette files
and will be read into internal memory only when required.
The associated reinversion technique used is the preassigned
pivot procedure [Ref. 2]. Each section of the algorithm
will be discussed in this chapter. The next chapter will

be devoted to the associated implementation.

A. A GENERAL SIMPLEX TECHNIQUE
Assuming that the problem statement has been transformed

to the form of (LPC), we may proceed as follows:

21

...... ~ v w ~ N
N A\ §\ -.\ '...\ '.\.,\“\ ."\

IS T L R

. NS
W T SR SOAG, RO Y S

R A SAMEGE SR LS SO S LR st g AR AR S S A e A S MDA A A 4 S I Sen Bhe Joe B iie S b Srib ot el ot el B - are e o 20 o g |

A

SSAY

NN

N

%@ 1. Rewrite (LPC) in Terms of Basic Solution

S

‘e At any iteration; let B be a set of m linearly
n _

" independent columns of A which leads to the column parti-
\'.

Si tion of (LPC):

o min cx

o

:'."

;Q‘ subject to Ax = b = [B|N] x

o

BXB+NXN = b .

The variables X, are called basic (or dependent)

with coefficients B, and the variables xN are referred to
as non-basic (or independent) variables with coefficients

N. It will be convenient to index columns of B and the

&
%

basic variables Xy by the row to column mapping ji (for

N
iq row i, the associated basic column and variable is iy
ﬁ: 2. Basic Solution

A basic solution at any iteration consists of the

A
Py
>

N

values of xB and XN. The value of each of the xN variables

S

is, by convention, a constant equal to zero or the asso-

ciated upper bound. For illustration, we will assume all

3
2

non-basic variables are at zero.

s

The values of the basic variables xB are defined by

the problem statement (LPC) as follows:

;l;, el
[+ ER)
NP

g,

o - Since BxB + NxN = b

y = B b -B"

i then KB 1b B lN)SJ .

o) and Xy 0 = X, = B 'b.

Y LY rg"tr

[R y . N N . o PR .y
RS 102" DA AR 2 N SN) o T ttetT M) . N ” ST PRt
A N e da X G \ . M . . A SR L LR

The value of the objective function is defined:

. cx = chB + chN

-1
cBB b + chN

and again

XN 0 = cx cBBb.
3. Priceout
The purpose of the "priceout step" is to identify
a non-basic variable for which the rate of improvement in
the value of the objective function is favorable.

Consider:

cx = chB + chN

= cp(7lb - B7INX) + X,

= ¢!

-1
B b + (cN - cBB N)XN

- -1
cBB b + rxN .
Note that cBB-lb is the current value of the objec-
tive function given X = 0 and (¢ - cBB°lN) is the vector
of reduced costs, r, which indicates how much the objective

function changes as xN changes, This vector, r, will be

.........

..'._'..~ ." .-‘.. i. N > . - .Q] . A - o T e LYy
;ﬁ‘:’m 3 ‘-‘.'-i;.&':‘;i VAL SRS

Ll et S Tt St A st Jiun it g e St iR afl 0y Sl arw et o S S Soa g DRI N B i gy B v el e i s 2 el e arau g g cae s okt e **
A S s " . -t . . . - o, <! L e S e el R

.............

searched to determine which variable, xq, will enter the
basis. The subscript, q, indexes the column chosen.

If no favorable price is found in this search, an
optimal solution is declared for the current objective.

4. Ratio Test

The "ratio test" insures that the subsequent solu-
tion will continue to satisfy all variable bounds. The
ratio test searches for the first variable to reach one of
its bounds as xq increases in magnitude. If basic variable
xji is the variable which first reaches a bound, 0 or UBji,
in terms of the incoming variable xq, then xj leaves the

i
basis and xq enters. Otherwise, xq reaches its own opposite

bound before any basic variable does, and xq will not enter
the basis.

Let Y = {yij} represent the updated values of the
elements of the matrix A, with Yj denoting column j, such

that:

Y. = B “A. "updated column",

Y. = B b "right hand side" .

and recall that the basic variables are determined by:

A, PP o

Then the variable which exits the basis is determined by:

MIN a) UBq, upper bound on entering variable

b) min yio/yiq' Yiq >0

c) min(yio-UBji)/ Yig* UBji finite and
Yiq < 0.
Let p be the index of the constraint in which
the "winning" ratio is found so that p = ¢ in case a),
and x. is the leaving variable in cases b) or c). 1If
p=2¢ gnd UB_ = «», then the problem is unbounded: no
variable reaches a finite bound as xq increases and the

value of the objective function increases without limit.

5. Reflection

We have assumed for convenience that Xy E 0.
Suppose that xj is bounded so that 0 < xj < UBj, and that
at some point xj leaves the basis at its upper bound, UBj.
Then to preserve XN = 0 and avoid complication in the logic
required to handle this new type of variable, we "reflect"
the variable xj.

The variable xj is replaced by UBj - xj. We will
record this replacement as a status of the variable xj
(noting that another reflection of xj restores its initial
status), and take care to modify the right hand side with
the constants A.UBj and treat column j as if its sign

J
were reversed.

25

.............

LASCIRIM ISR A A AR RN T Y S v A Sen) ‘o e S0 iree Suiet Bnscaiy |

.........

6. Ugdate

For cases a) and c¢) of the ratio test, a reflection
is required in the update. For case a), no further work
need be done as xq remains non-basic and B is unchanged.
Otherwise, in cases b) and c¢), the variable xq enters the
basis and xj leaves the basis. In these cases, an elemen-

tary transformation matrix E, must be formed such that

k
EkB;l = B;il, where B;il is the inverse of the new basis

with xq € Xg and xj € XN. In this way a "pivot" is per-
p .

formed about the element ypq, with:
1 0 ... 0o v, o ... 0
0 1 . 0 vy 0 “es
0 - .
Ek = L] l L] L]
. Vp . i
. 3
_p 0 0 Vi 0 .o ld

where v, = -yiq/ypq' i # p and vp = 1/qu‘

B. TWO PHASE SIMPLEX

If the initial basis includes artificial variables,
the initial basic solution may be infeasible. The values
of these variables must be reduced to zero to obtain a
feasible basic solution, if one exists. Phase I of the
two-phase simplex method accomplishes this task. If

Phase I produces a feasible solution, the original (LPC)

26

...........

P Y
T et e ettt e
5 LIRS KL SO

- -'.“."3‘?-_"-'_-‘-1'-‘_-',-“-—“-"3“..".'.'-Y.‘F~’-'.'.".'<"-~.'," Lo At A Sandha i A A S ASE TP i e A BT g b Ar I e i Agy e e aag, |

objective function is restored and Phase II is begun.. Phase
II improves a basic feasible solution to optimality.

The first step in Phase I is to introduce a special
objective function. This vector contains a zero for each
non~-artificial variable and positive unity as a penalty for
each artificial variable in the initial basis, so that

the objective function is of the form:

Phase 1 objective:

MIN (sum of the artificial variables).

The simplex technique is then applied until the priceout
step produces no favorable (incoming) variable. At this
point an optimal solution to the Phase I problem is obtained.
If the optimal value of the Phase I objective function is

zero, the artificial variables all have zero value and the

associated basis provides a feasible solution to the

original problem (although not necessarily optimal for (LPC)).
If, on the other hand, the final value of the objective
function is positive then not all of the artificial varia-
bles have a value of zero. Thus a feasible solution to

(LPC) does not exist, and hence none exists for (LPF).

During Phase I, an artificial variable, once removed

from the basis, is never allowed to re-enter. When (LPC)
contains redundant constraints, artificial variables may,

i ' with value zero, remain as part of the basic set of variables

4.
N
v
g
N

[P

e U.‘u‘A;

3

i
v

0

i
Ph NN RN

at the end of Phase I [Ref. 1, p. 103]. It is necessary

that their values in Phase II never exceed zero. This is
accomplished by eliminating all non~basic variables whose
reduced costs, rj, at the end of Phase I are greater than

zero, for if one of these variables were introduced into

the basis during Phase II, the value of some basic artificial

variable would increase and the solution would again become
infeasible. Once this task is completed we are guaranteed
that if artificial variables form part of the basic set of

variables in the various iterations of Phase II, their

values will never exceed zero. (See proof; [Ref. 1, p. 103].)

Also, during Phase II, an artificial variable is never

allowed to re-enter the basis.

C. A BOUNDED VARIABLE SIMPLEX TECHNIQUE

l. Transformation of Variables

A "bounded-variable" problem may include non-zero
lower bounds on values of variables. Since the algorithm
adopted assumes all lower bounds are zero, a transformation
of variables must be carried out prior to the simplex

routine:

and requires the following additional bookkeeping:
a. PFor all variables with non-zero lower bounds, LB,
modify the upper bound, UB, such that the modified

upper bound MUB = UB - LB.

28

N A e Y AT R (C e AT a4 . e et g e "ave®ec s

“‘a(_ ""‘ t - Ta N, w W e - "
SIS B € Jyt s ' AR A B Lo - ot . RN et et W e

:

‘c“/l“f L

.‘4
R oy}

1
i

S

e]

Saatinc®,

&

i\

¥

b

G

b. Modify all right hand side values such that

b! = b.-%aij*LBj, for all i.
A retransformation will be required to express the

solution in terms of the original problem statement. Let

b' represent the right hand side value of the transformed

problem at completion of the simplex algorithm, and ;j repre-

sent the value of the j-th transformed variable. Then

the transformations required to arrive at the solution to

the original problem statement are as follows:

J J
dependent on whether the variable xj is at its lower or

If xj is non-basic then xj = LB. or (MUB. + LBj)

upper bound.

If x. is basic then the following cases apply:

3

CASE (LPF) bounds (LPC) transformation

All logical variables are bounded this way.

~

2 =@ < xj <0 X, = =x.

3 xj is a free variable X, = u.--vj

29

R Wt

l.
\
ﬁ 4 a < xj <b
S and xj is not reflected xj = ;j + LBj
; or xj is reflected xj = MUB. + LB. -~ xj
:
) a<x. < = .=A+
: =% *5 Xj + LBy
{
; 6 - < X. < a , = - A. + .
: j = *3 (x5 + 1B
g 2. The Algorithm
0 . The bounded variable simplex algorithm implemented

is as follows [Ref. 4, p. 51].

E STEP 1l: (PRICEOUT) Determine the non-basic variable,
A xq, for which

;

1

.“

5 MIN (r. = c_ - c Bt r_< 0)

! q q = S8® Nqr Tq .

y If no such variable exists, stop; the current
; solution is optimal.

§

) STEP 2: (RATIO TEST) Evaluate the three numbers asso-
)

4

y ciated with variable Xq chosen in Step 1.

é a. UBq (this bound may be infinite)

N

c. min(yio - UBj)/yiq' Yiq <0, UBj. finite
i i

30

N~ T e W %W s e e w % e e e e .
Sl o .‘\’ Y . '.-‘-.‘5-‘-"-" St e NN T et A A R L Y e N T T TN

SRECA LR TRLAR L% oyt gt e TS LGS UG '.'\#. -'..-'.'-'.'-' T e '.-".-'PV'\:.\ " .‘-..‘-‘ '\'.'-' \',‘-".\'_\'.*-‘ .':\.‘.!.‘.ﬂ".

- & 1 [} 0 f

h oy RTRTATE TuTaTa Ve ®, 0 0 o v 7w & 0 s e s e e e T T T T TR T AT T I T . T .Y Y Y WY T W s T T T ™

’J’
V’

. b
'-4\".‘

where UBj is the upper bound associated with the variable
i

that is basic for constraint i. Note that if the upper

A
PRI IRAR

P
. a

bounds are infinite and there are no tests of type b then
the ratio test may fail. 1In this case the solution to the

problem is unbounded in terms of the incoming variable.

STEP 3: (UPDATE) Depending on which item in Step 2 is

smallest, update as follows:

a. Reflect xq. The variable xq goes to its opposite
bound. Subtract UBq times column q from the right

hand side. Multiply column q by -1 and change the

sign of the indicator vector element eq to show that

by xq has been reflected (changed to its opposite bound).
X
s

No pivot is required.

r§ b. Let p be the minimizing index in (b) of Step 2.
L Then the p-th basic variable returns to its old
i bound. Pivot on the element in row p and column q.

8 c. Let p be the minimizing index in (c) of Step 2.

o

%% Then the p-th basic variable goes to its opposite

fj bound. Reflect xjp. Subtract UBj from YpO' where

?? UBj is the upper bound associated with the variable
AR

o that is basic for row p; reverse the signs of y_.

P)
P
and ej (to show the reflection) and pivot on the

element in row p and column q.

RETURN TO STEP 1.

31

« o e

v L
BN DAL 3 AR P S P IPL S e e et et e T AT " N e T AT A" A A Q
! g e 3 ¢ e % % e Y L R L L TR LS M W] S Ve
: h ¥ 2 . AR AT VS RPN R A A RO Ifi. x'.‘_'(_')'-.

',
oL o

{vh

AW TN o

-

L

M

on i S e e

Tl AP

BE_)

AT

>

..
......

D. REVISED SIMPLEX--PRODUCT FORM OF THE INVERSE

1. Advantages

Due to the limited random access memory (RAM) available
on the eight-bit microcomputer, tableau (matrix) simplex
methods limit problem size. 1In order to solve "large"
problems involving several hundred variables and constraints,
we must store some of the data "off-line". This is done

by reading and writing data to non-volatile memory diskettes.

COMPLETE TABLEAU REPRESENTATION

Xp XN

- -
I b g7y 8" 1p
]
= -—-----—. - s i, ap ey an ey oy en enen | 0 G ab =S T o > > -
Y . ¥;41¥50!
' - -1
0 1cy = B 1g cgBlb
=) —d
basic non-basic right hand
variables variables side
Figure 1.

The simplex method using multipliers (DANTZIG) or
the revised simplex method with product-form inverse affords
the following computational advantages while providing the
necessary intermediate data that can be efficiently read

from and written to diskette data files (see (Ref. 1, p.

210)) .

32

WY \:_s'_s. ";"VJ"C‘\- w.:.\;_:.' NN

% LGy L Cu .« .
~ .:‘lmv .“' s .\l\q’

B,

A DR A AN R AL AR AR i i p e et ab YV VN Y DRI S I o S g ees San A Boes e i paan Say g) SNy QA MR i A T A RS I I A B B,
.

- -‘

.

f: a. Less data is recorded from one iteration to the next,
27 which permits more significant figures to be carried
F or a larger problem to be solved within the limited
T . memory of the microcomputer.

b. Where the original data has a high percentage of
;j zero coefficients, there are fewer multiplications.
iﬁ In the standard simplex method, each iteration re-

quires the recording of at least (m+l) (n+l) entries.
Here, however, by use of cumulative multiplications,

the amount of recorded information is reduced to
2m+l entries.

c. High speed core (RAM) storage requirements are

reduced.

2. Elementary Matrices

)
é Consider the tableau represented in Figure 1, and

suppose Y is transformed by a pivot operation where the

pivot column is:

e Y
-

3

23 Yq = (qu,yzq,...,qu)T'with pivot element Ypq

, The result of the transformation is the matrix, EY,
<

3 where E is the elementary matrix:

i

y .

y

A

i 33

T

IR A T T N
LA §

. - . . P . - - - ~ -t
Ay PRI T WL PRV WS SRS

. - - @ e o« c e w mme - P AN TAT e
D F N R T TN T T L T L P (o e

L, DR A R MR R S S N A S N A A S APt A /e A A A S PR Bon S e B
- .
X 1 1 o ... vy 0 ... 0
; 0 l * e 9 v2 * & 0
0 . .
N E = . 1
.ﬁ
; . vp .
b . 1 0
Lp 0 0 Vi 0 ces l_
[y
where v, = 'yiq/ypq’ i # p and vp = l/ypq.
é Now, since the elementary matrix, E, is determined
.
; entirely by the elements of the pivot column, the remainder
2
¢ comprising the identity matrix, all that must be stored is
5 the pivot row index number and the associated column vector.
§ At any intermediate iteration, k, the product of these ele-
4
> mentary matrices represents the inverse of the basis:
.
¥
Bl = E E . E E, E
k k k-1 "k=2 °°** T2 "1/

g where Ek is the elementary matrix corresponding to the
¥
o k-th pivot operation.
- Now we will augment the algorithm previously stated.
& . . -1, _
% 1. Since the basic solution X =B "b = (E, (E,_,(...E;b))),
5 we can maintain xB current at each iteration by
ki

simply multiplying (on the left) by the new elementary
iy matrix for that iteration. This information is used
N in step 2 and is represented by Yo.
’ 2. Calculating current relative costs, r = Sy ~ cBB'lN
N can be represented by

A oY

RN 3 o A i (v S LIl B PO R o P o T T L Y
T N e, N e T Y)) G N A A A R R AU R R I R IO

N e e e e R

g -

gy

YN

AT <GP

ey

Ll A ey

U " P o G

~asalld

{
7
£
¢
¥

L T O T T T T T U PPV TV I o o v rwes |

r = cN - AN ’
where
A= cBB' ("simplex multipliers")

3. Once the pivot column is chosen, the current values
of the elements of that column are required for Step

2. Calculate:

E. DEGENERACY AND CYCLING

Degeneracy is encountered when one or more of the

elements of the current solution (right hand side), B~
become zero. Thus it is possible that more than one basis
has the same coordinates, X. When degenerate solutions
occur, we can no longer argue that the simplex procedure
will necessarily terminate in a finite number of iterations,
as is true in the non-degenerate case [Ref. 1, p. 100],
because the value of the objective function will change by
an amount equal to zero and it is conceivable that the same
set of basic variables may recur. If we were to continue,

with the same selection of xq and xj for each iteration as

before, the same set of basic variables could recur after

35

L L i LA AR S i T L i SR SEGR Sre Ve g . b o

k iterations, and again after 2k iterations, etc., indefintely.

This recurrence of the same basis is called "cycling",
(Ref. 6, pp. 68-69]. We choose to proceed with an algorithm
that does not allow cycling.
Pivot selection rules exist which ensure completion
of the simplex method within a finite number of iterations.
The rule referred to by Bland as "a simple finite pivoting
rule” (Ref. 3] is stated as follows:
1. Among all candidates to enter the basis, select the
variable xq having the lowest index, i.e., pivot on
the column q determined by:

Yo min{yoj: Y04 <0} .

q
2. Among all candidates to leave the basis, select the
vvariable xj having the lowest index, i.e., pivot in

P
the row p determined by:

Y Y,
p = min{s: y > 0 and _s0 . min{—%gz y. > 0}} .
sq sq - Yiq id

Since we have added a second possible pivot option in
the bounded variable simplex method, we must modify this

last statement as follows:

Y.n~UB.
Yg0 Yio i0 735
p = min{s: — = min{—: Yig > 0 —5—
sq Yiq q Yiq
., <0
qu ’ 1)
UB. finite
Ji

- ‘.._‘.‘.*.1

L A Sl Y AL AN DA MR e RSt O O S A A e I S A A B e s s A ey~ oot ngh vt e Bl Sd St o |
. - T «

<~‘c-".'
i s.n AL

i oy

£

Tt

ata’afetaate”

e Sl

-~ 1

3
"
i

Note that in either case the row, p, contains the
first occurrence of the minimum positive ratio.

It has been shown on small test problems that imple-

mentation of Bland's rule may cause a significant increase

in the number of iterations required to complete the
problem [Ref. 7). Current research by Brown and Dewald
[Ref. 8], suggests a hybrid rule that restricts the pricing
rule only when the current solution is degenerate. Looking
again at Step 1 of this rule we will expand the procedure
as follows:

a. Define a permutation set of the column indices:

K = {kl,..., kj,..., kn}, with a partition after ks.
b. Assign the partition boundary s = 0.

c. If the minimum positive ratio encountered in Step 2
of the previous pivot is non-zero, indicating that
the current solution is non-degenerate, set s = 0
and select the variable xq by the original most

negative rule.

d. If the minimum positive ratio encountered in the

previous step equals zero then the current solution

is degenerate. Select xq by Bland's rule #l such

that:

* 1, If s =0 then g = kj where j is minimized:

MIN{j: Yok, < 0, J = l1,...,n} .
J

37

* 2. If s # 0 then select xq such that g = k. where
J is minimized:
MIN{j: Y0k7. <0,4d=1,...,8} ,
or, if no such q exists, then select g such
that

¥

q MIN{yOk.: Yok. < 0r d = s+l,...,n} .
) d

Once the incoming variable has been chosen then if the

and

"winning" index, § > s interchange kj and ks+l'

assign s « s+l.

What we have constructed is an ordering of the columns

of the tableau such that Bland's rule is followed, but its

pricing restriction is applied only when absolutely neces-

sary. In this way "most negative pricing" is allowed

whenever possible. Now we must reconstruct Bland's proof

that the simplex method under this rule cannot cycle, hence

is finite.

PROOF:

l. Since the simplex method cannot cycle as long as the

minimum positive ratio > 0, then monotonicity of the

objective function value implies that the simplex

method terminates after finitely many pivots examine

a finite number of ordered bases.

LI R T SR R I i R N S A L FE R P I R I CRS

PRCEAr e Shaciig A Ttiban Aem Ses b S A -

2. If the minimﬁm positive ratio = 0, Bland's rule is
used until:
* i, the minimum positive ratio > 0.
* ii. optimality is verified.
* 1iii. primal unboundedness is discovered.

By Bland's rule this will occur in a finite number of pivots.

3. Once the pivot is completed for some ratio greater
than zero, the simplex method can not revisit any
previous basis. The algorithm has moved to a new
basis corresponding to an improved value of the
objective function.

4, Therefore, the monotonicity of the objective function
value implies that the algorithm terminates in finitely

many pivots.

F. REINVERSION

A characteristic of the product-form inverse algorithm

is that with each pivot an increasing amount of work must
be done in order to apply the elementary transformations.
The addition of each elementary transformation vector in-
creases the number of multiplications in the next iteration
by as much as twice the number of constraints in the problem.
At some point it becomes more efficient to replace the list
of vectors, commonly referred to as (ETA), with a smaller
set representing the same basis.

It is convenient to again transform the right hand side
b' at this point to accommodate reflections of variables

with upper bounds as follows:

39

- Por each reflected variable xj:

" = | I * i
b} b! %aij MUBj, for all i,

where aij are the original non-zero problem elements.
Hellerman and Rarrick [(Ref. 2], present a statement of
the reinversion problem as follows:

- Given--a set of basic variables

- Find--a set of transformation vectors (ETA) which
imply the inverse of the basis in such as way as to:
* a., minimize the number of non-zero elements in
ETA and
* b. minimize the work done in forming the ETA.

y This is, of course, extremely expensive to do optimally.

Starting with Markowitz's observations [Ref. 9] on

minimizing the number of non-zero elements when forming

the ETA vectors, Hellerman and Rarrick develop a fast and
efficient heuristic algorithm called the "preassigned pivot
procedure”. This development shows that if the rows and
columns of the basis matrix can be re-ordered so that a
pivot sequence can be assigned progressing down the diagonal
of the transformed matrix M, where M is lower triangular
with non-zero diagonal elements, then no additional non-

zero elements are generated in the ETA representation.

40

.......

AU IR T S P A R IR P A 29 R ."' Eaf s ol _"“. "“"-":'-T-v_ -~ _'.“'"'P"T. LS _‘\—_?'_:v'_:'.'. .?:f-':fv_vr_}:v-; R LALE AL R A

Ta T e,

—p
e

F?

s '
PPN

-
a

i}
a« a4

PREASSIGNED PIVOT MATRIX REPRESENTATION

O I]
O

2
P WV

.
)

-"t"c

R

B
C
A
D E
Figure 2.

In general, the lower triangular form cannot be achieved
but only approximated. Some of the columns of M will have

non-zero elements above the diagonal. These columns are

7
v

called "spike columns". In fact at some point in the

» ATy)
N PR
cvd AL A

A
b e

»

process there will usually remain a set of spike columns
called the "bump" so that the matrix can be represented as

shown in Figure 2.

In Sections A and E we have found pivots on the main

diagonal and all other non-zero elements are below the

g

;ﬁ diagonal. Section B has all elements equal to zero.

™ Section C is the bump.

%5 Note that Sections A and E have zero multipliers as we
Eg proceed down the diagonal. The major problem, then, is

!i the build-up of non-zero elements in Sections C and D. This
A\

S S A LA E5 50 A G A K AR D K T S FO Al St e e R AU I A A I SIS At it e S ot . a0t S Srih -t S-S A S dna |
v - . . - ct e T . . e
«
w4
'\‘

build-up can be minimized by breaking Sections C and D
into two or more bumps so that the non-zero build-up occurs
only in the smaller bumps. The process of selection of
each spike in the preassignment procedure is to choose the
next pivot column so that:

a. when its effect is removed from the row counts
(number of non-zero elements in each row not already
assigned to the pivot sequence), it will create a
maximum number of row counts of unity or, ;t least,
as many small row counts become smaller as is
possible, and

b. the chosen column can be pivoted as soon as possible
(thereby being updated by the smallest subset of ETA).

The concept of a tally function is used in the algorithm
to effect the above goals. The function is defined by:

- tk(n) = the number of non-zeros that column n has in
rows whose row count is less than or equal to k, for
all n {all columns not already assigned a position
in the column pivot sequence or designated as a
spike column}. The (k,n) combination giving the
maximum tk(n) selects the pivot column.

Two other considerations are also mentioned in connection
with the preassigned pivot procedure [Ref. 2]. 1If during
the scan of column counts, a column with a count of zero is

found, then a singularity exists in the current basis. The

column should be dropped from the basis. Similarly, when

b Sl b a2 o S S SRR SR A IO DI AL A A A A AP B AL T AL AFI G Sl B SPEL ME s Ses s o 4 uatee

scanning the row counts, if a row count of zero is found
in an unassigned row, then the associated constraint is
redundant and could be removed from the problem or repre-
sented by a basic artificial with value zero. The other
consideration is that in computer implementations, if the
updated pivot element becomes too small (machine zero) to
be used for a pivot then it is necessary to find an alter-
nate pivot element. This can be done, in theory, by a
proper choice of an alternate spike pivot column [Ref. 2]
(a "spike swap"). Another method is to use Gaussian partial
pivoting, find another row in the current column having a
favorable pivot element and continue. This may

lead to a compromise of our original goals and

introduce additional spikes. A third alternative is to
replace the current basic column with a logical variable
(unit vector) column having unity in the pivot row. Note
that this technique may introduce an infeasibility in which
case a post-reinversion return to Phase I will be required.
The initial implementation of this system will include all
three options. Although the "spike swap" technique seems
to be the preferred procedure it requires updating of
multiple columns. For this reason the partial pivot proce-
dure is tried first followed by the spike swap if no non-
zero elements are found. When both of these techniques

fail, the unit vector insertion is used as a last resort.

43

e |

Iv. IMPLEMENTATION

The implementation uses a KAYPRO II, 8~-bit microcomputer
with 64K random access memory and two single-sided, double
density 5-1/4 inch floppy diskette drives. Approximately
57K of this memory is available for program locading and
storage of variables. The diskette drives are used for
subroutine storage as well as off-line storage of the
problem files and the product-form representation of B‘l.
The remaining 7K of internal memory is utilized by the
operating system. The language in which the code is written
is a "semi-standard” version of Pascal. The programming
package, JRT PASCAL version 3.0, is very nearly a complete
version of Pascal as initially designed by Wirth (e.g.,
[Ref. 10]). The JRT version has numerous extensions that
make file handling on the microcomputer relatively simple.
The major disadvantage of this language package [Ref. 1ll] is
that the code is never completely compiled and, therefore,
requires a resident "exec" driver which interprets the semi-
compiled code. This exec occupies 24K of the usable memory
and executes less efficiently than completely compiled object
code. An additional disadvantage of this language-machine
combination is that the KAYPRO II, without an available
modification, has a 2-80 processor that runs at a speed of

only 2.5 MHz. This relatively slow processor speed has an

44

W h N

SeTar AT AT AT e e

..................

obvious effect on solution times, and motivates the developer
to organize programs in small, easily compiled externally

linked Pascal procedures.

A. DATA STRUCTURES

The data structures used in this implementation are
quite simple. They consist of a number of one-dimensional
vectors of dynamic length, and data files which are recorded
on non-volatile memory diskettes. The size of the vectors
is determined by the number of variables and constraints of
the problem. The size of the data files is dependent on
the number of non-zero problem elements and the number of
iterations (pivots) performed. To illustrate the structure
a listing of arrays and variables follows:

- Major data types: Listed in Pascal format for con-
venience, the data types defined as records consist of
two-dimensional arrays of elements that may be accessed
with a single "read" statement. This Pascal convention
is of great value when reading from and writing to
off-line files.

* real

* integer

* boolean

* matrix = record

a: real; non-zero problem element

iar: integer; row index of the prohlem

element

B

e 3 A i i i el i caita Rt Tl A A Al

*

*

Ll

. LIRS SR Sl i D B i
- - . - ~ -

............

etavec = record
etas: real; non-zero elementary matrix
element
ieta: integer; row index of the elementary

matrix element.

ranges = record

lb, mub: real; lower bound for variable
modified upper bound

(UB - LB) for variable) .

- Array variables:

*

*

*

bounds: array of type = ranges; variable bounds.

c: array of reals; initial cost coefficients.
e: array of integers; status of variables,

basis or non~basic, or removed from consideration
in the problem. Reflections are indicated by the
sign of the element, negative indicating a
reflected variable.

jbasic: array of integers; variable basic for the
each constraint,

ka: array of integers; random record number of
first element of each column. The random record
number is the location key into a random access
diskette file and indicates the logical record
number at which to enter.

ke: array of integers; random record number of

first eta element in the eta vector for each pivot.

46

™, { - ", «* <« w - Q- iiiiiiiii -
JE-L" } ::':r}“\.p\n\.p PRTRLIG TR YRR ").*

S A R A O SO S S USRI PSSR s A S 0~ 4 T SO RIUIC R S &

* kj: array of integers; row number for each
pivot,

* xb: array of reals; current right hand side,

B'lb.

* tc: array of reals; current column of the tableau,

-1
B A .
q

* tl: array of reals; current simplex multipliers,
-1

B

* rsgide: array of reals; initial [untransformed]

right hand side, b,
* unitvec: array of integers; index of original logical
column for row i.
* cycle: array of integers; hybrid Bland's rule
vector for pricing with degeneracy.
- File variables: (dimensioned 2 by the number of file
elements)
* eta: type etavec
a B inverse matrix element
from etavec data type.
* ele: type matrix
a problem matrix element

from matrix data type.

B. INPUT
Input to the problem solver is accomplished through the

uge of three subroutines. These include an interactive

session, "TYPEPROB", during which prompts are given regarding

St

¢
3

oo

required data input procedures and options; a module,

"MODPROB", which transforms the formulation into canonical
form and sets certain vector parameters, and a "READPROB"
subroutine which creates the final formatting of the problem.

Initial problem input may also be created using any
simple word processor and the first subroutine, "TYPEPROB",
may be omitted by menu selection. The format required for
the file is illustrated in Appendix A.

The problem data used in the example throughout this
chapter is taken from the bounded variable example of
Luenberger [Ref. 4], page 52. This problem statement is
included in Appendix A.

1. TYPEPROB

This subroutine is designed to create a diskette
text file of the problem formulation. An interactive, menu
driven series of prompts is used to explain the input re-
guirements and options of the input system. Appendix B
displays a sample input session.

Upon answering the first question posed by the pro-
gram with (1), to input a new problem, the user will be
asked to specify a problem name. This name must be EXACTLY
eight characters long. In the current implementation this
is a file-naming restriction.

The prompt will then present a series of text pages.
Appendix B illustrates these pages. When the user completes
his responses to these questions, a series of requests will

be presented as follows:

48

..............

INPUT NUMBER OF CONSTRAINT ROWS
Do not count the objective function.

The user inputs the integer representation of the

number of constraint rows of the problem formulation.
INPUT NUMBER OF VARIABLES
Do not count logical variables.

DO NOT count the right hand side as a column.

At this point more instructions will be given on
the proper procedure for input of integer and real data
types. Then, the columns will be accepted from the user,
one column at a time. The variable associated with the
column will first be named. This name may contain up to
5 alpha-numeric characters. The next question posed will
be a multiple-choice menu of variable bounds for the current

variable. The choices are:

(1) 0 < VAR < infinity

(2) =-infinity < VAR < 0

(3) VARIABLE IS UNRESTRICTED (free)
(4) a < VAR < b

(5) a < VAR < infinity

(6) =-infinity < VAR < b

Simply choose the appropriate category for the

current variable. If the variable is bounded, then the

49

[4 -"4

next entries will be the lower bound entry, and/or upper

o

bound entry as appropriate.

)

‘ At this time the following "heading" will be pre-

sented on the screen.

D
St
et e
‘s’atsa"a

-
-
Y

ROWE¢ / VALUE // OPTIONAL ROW # ,/ VALUE
Negative row to end column.

P El

Lol

The user is to input the INTEGER row number followed

&

[

by the REAL value of the NON-ZERO element in the specified

el

column and row. An additional row number and value is

¥, allowed as long as the column number does not change. ALL

‘ ROWS OF THE CURRENT COLUMN MUST BE INPUT AT THIS POINT.

This includes the objective coefficient for this column as
well as the coefficients of the column's constraint elements.

Additionally, more than one objective coefficient may be

- o .

A2 2 L)

entered at this time. This is to allow for maximum and

minimum problems to be entered using the same constraints

-

but different objective functions.

When a -1 is entered in the next row entry position,

.‘:.t ‘ s ."

the column will be terminated and the next column will be

%

presented. When all variable columns have been entered

the format of the entries will be changed to outline the

P e

input required for the right hand side entries. This format

bor g

" will be:

<

N For RHS #1, ROW # 1

) ENTER G L or E

' FOR >= <= =

B FOLLOWED BY:

3 <SPACE>, value of RHS, <RETURN>. .
l‘:‘!

N

£

50

e e
L A '
(AR

.

Iy l'.((c .

X K4
CA L

LAXAAS

4 .

el
ag- vy

T
AFLISEY " ' SRAN

ARy

LA
L~
L

20 "2 T) A A T i e ‘A N R M i N 20w o R R el b S i AR el e 3

.................................

This prompt will be presented for each row. The
next prompt will then ask if another RHS column is to be
entered. Thus, multiple right hand side columns are accommo-
dated. In this way multiple problems using the same matrix,
A, do not need to be re-entered for each objective and
right hand side that might apply. When no more right hand
side columns are required the subroutine will terminate and
the program will request information concerning the objec-
tive function and right hand side to be considered for the
imminent solution.

The file that results from this subroutine is stored
on the diskette in the form shown in Appendix A. The name
of the file is B:probname.TMP, where "probname" is the eight
character name entered by the user. If this file is con-
structed manually without the use of the subroutine, then
the appropriate name must be given to the file so that the
program can find it on the "B:" diskette in the future.

This file-naming procedure which includes the diskette index
is not specific to the KAYPRO II but is endemic to
microcomputers.

2. MODPROB

At the termination of the subroutine "TYPEPROB"
or if the selection is made to re-run a problem that has
been previously entered, then the subroutine "MODPROB" will
be called. This subroutine will modify the format of the

problem file to include only that right hand side and that

51

-

el la

AJMJ—'-J‘

. NG
atataalal

Tt et

-

a0

AN

1 1RGNS

»
l.l

o AR, -7,

'

LY
LY
LY
\)

N A S A A

- a T aw
LA A SR T A A AR AR R N AL N S et i i P T T W T

objective function applicable to this specific problem.

It will also add the appropriate logical variables to the
column list. This new set of non-~zero problem elements will
then be written to a new text file, B:probname.DAT, for

use. Additionally, the first set of basic variables will
be listed, by column number, with negative column numbers
representing artificial variables and indicating that Phase
I simplex will be required. An example of this DATa file
is shown in Appendix C.

This subroutine also allocates dynamic storage for
vectors and writes a file listing variable names. The user
will notice a delay during the time "MODPROB" is working.

A large portion of that time is due to the naming of logical

variables. The naming routine is slow in this implementation

due to inefficiencies in the JRT PASCAL structure.(not an

important consideration in the development of the basic

algorithms). There are faster ways to name the logical

variables, but a better method was not found for JRT PASCAL.
3. READPROB

This subroutine completes the reading of the problem
data file into a working file that is random access,
binary and unreadable to a text editor. This is a fast
access off-line file from which the appropriate non-zero
elements of a column can be accessed when a column update
is required during the simplex procedure. Upon terminatiocn

of the "READPROB" subroutine, the problem has been transformed

52

D P AN i e & G SONR i el a |
v Te T - - L Rt

............
................

SO to canonical form and all initial values have been set.

_i The problem is now ready for the simplex technique.

C. THE PROBLEM SOLVER

The simplex algorithm implemented is a "textbook"
Pascal translation of the theory and approach already dis-
cussed. A modular, procedure-calling technigque is used
which allows compilation of small units of code, linked
as external Pascal procedures. A short description of

each procedure follows.

ACAR K

l. SIMPLEX

AN

.

The simplex procedure is the driver for the problem !

solver. It determines the requirement for Phase I or Phase

2 A

II, initializes the required objective (cost) vector and

{ calls all of the other procedures directly associated with
the simplex algorithm.

2 2. PHASEI

This procedure solves the modified problem

<N

2 Minimize | x.

~; 3 aftificial

. subject to the given constraints,

N

2y

$? arriving at a first feasible solution. If no such solution
- exists and the problem is infeasible then the most feasible,
Sf last iteration solution is output and the program is ter-

-

;; minated. If a feasible solution is found, then the original
G problem cost vector is restored and Phase II simplex is begun.
:j

5

\ 53

............. . .
...... D R TR A T A SR A
....... SN N
. . Y ~

I T
SR W T T T B Y “

DI RS AR AR TN S Tl T i e e e S A T O aC i N A S £ A T ir et

TE TR T W T T T W Y v v W v e —

3. BTRAN

The "BTRAN" subroutine calculates the simplex

multipliers

using the formula (...(((cBEk) E _y)---)Ep) .
A copy of the Pascal code for "BTRAN" is included
in Appendix D as an example of the implementation code.
4. CcHUZQ
After "BTRAN" computes the simplex multipliers, this
procedure is called to calculate the current reduced costs
for all non-basic variables, oy " AN. In the absence of
degeneracy the most negative reduced cost over all xN is
chosen, resulting in the most rapid convergence to the
optimal solution. In the presence of degeneracy the hybrid
implementation of Bland's rule number 1 is activated.
5. ETRAN
This procedure is called at any time that a column

vector update is required. The function calculates,

Yo = B-lAq using the formula

B (Bpp C oee (EpAD o),

6. CHUZP

Using an updated column from "FTRAN", "CHUZP"

determines the pivot row, p, using the three-case test

for bounded variables.

........................

* SN ALY

i

EX AN,

7. PIVOT
This procedure is called by the simplex subroutine
and by the "REINVERT" procedure. Each time "PIVOT" is
called, an asterisk (*) is displayed on the CRT for refer-
ence. Each asterisk signifies the formation of one ETA
vector in the B™L product-form. If case a of the bounded
variable simplex algorithm is encountered and a non-basic
variable is reflected, (no eta vector is generated), then
a pound sign (#) is printed in place of the asterisk.
8. REINVERT
"REINVERT" is a direct implementation of Hellerman
and Ra;ick's preassigned pivot procedure with a few modifi-
cations. Forward pivots are completed as they are assigned
so that subsequent forward transformations can be used
immediately to reveal scaling difficulties requiring spike
swapping (pivot element too small). Constraint redundancy
checks are also implemented as described in [Ref. 2], page

214.

D. OUTPUT

The "FILEOUT" procedure causes the current solution to
be written to the output file, B:PFI.LST. At program
termination this text file may be printed using any simple
word processor. An example of the program output fof the
example problem is shown in Appendix E.

This procedure reverses most transformations used to

convert to (LPC). Thus, upper and lower variable bounds,

55

W W NN T v T, -, v - L — —
AT AT AT AN T AN M L Al S ol P At S e e dart S S S S AU A S o e et i oo TR T T YT w T vy R
LA
. M
)

)
4

RN
SN

.“‘-

.if free variables, and the extremal operator (min/max) appear
HS on the report as they did in the original formulation.
Constraints appear with non-negative right hand sides. The
report also lists reduced costs for non-basic variables and

dual prices for constraints with structural variables

basic.

5 .
3
AR

l'l'l‘
.,
L

DA

LR
T B

-']

. %

¥ l. .. 1) “l' 0.
’ A%J\ISO.I a &

WL,
R AN

. "‘\
S B A S

56

LN

XA

Y

S o« T A A" Mt At A e < " e V-t tv, P S P T T S IR I I
‘ Y “.” .L. N ,s. L8 ...'_.._.,.'_\‘) A .__*._\‘_‘. AT

e T T R T A W T NP SN 'i
. f&".:.i-.‘.&'.&h’i\'h.’ ..'_ﬁ'.\f\‘_\'_\\:.".\.‘_\':.'.\'-

SR

............

V. CONCLUSIONS AND RECOMMENDATIONS

The simplex implementation described has shown that

- ‘ advanced algorithms for linear programming problems can be

: packaged in an easy to use, interactive system on a micro-

51 computer. It has also shown that while solution time is

*ﬁ certainly not on the same order of magnitude offered by
mainframes, neither is there the cost associated with main-
frame CPU time-sharing. Reasonable solution time for a
linear program on a microcomputer might be the length of a

) coffee break. This implementation averages three to four

seconds per pivot for early iteration pivots and approximately

N 5 seconds after thirty pivots.

20 A time test was run on a problem- posed by MICRO VISION
i‘ (135 Herzel Blvd., Lindenhurst, N.Y., 11757) as an advertise-
3* ment for their "MATHEMATICAL PROGRAMMING PACKAGE II”. This
;gi problem restated as a bounded variable problem has 8 con-

‘3 straints and 17 variables, including logicals. The original
_: A-matrix is 85 percent dense. Total solution time on the

;ﬂ KAYPRO-II at 2.5 MHz clock speed was 125 seconds. This time
;% included 30 seconds required to write three solutions, Phase
b”

I, Phase II, and the reinversion solution. Phase I and

reinversion times were also included in the solution time.

While these times are not as good as the MICRO VISION time

<

é

published, the limit on the number of variables and constraints

g 57

2 2d

for the MICRO VISION version is listed as "100 x 100 on the
IBM Personal Computer or model XT with 128K memory". The
limit on constraints and variables for the description
given in this paper has not been reached. The limiting
factors are the number of elements in the one-dimensional
vectors required for the underlying data structure and the
size and density of the diskettes used to store the out-of-
core files.

Serial file organization of the problem and eta files on
diskettes would greatly improve performance. This modifi-
cation would require organization of these filés in "pages"
of columns to permit efficient serial reading of a (problem
dependent) set of columns at each diskette access. 1In
concert with this modification, partial pricing ("batch
pricing”) would probably improve execution efficiency a bit
more. Unfortunately, these relatively easy modifications
require significant redesign of dynamic memory management
and file handling constraints. These enhancements have not
been implemented at this writing.

We hope that the work presented here will further stimu-
late the development of additional mathematical programming
software for use on microcomputers. As costs of micro-
computers continue to decrease while system capabilities
progress, the operations research community must be prepared
to take full advantage of the availability and potential of

these valuable tools.

58

T ™

< - P e e

DA 2N I I i o (- ke e S iy .‘

Copies of the PASCAL code and diskettes formatted for
the KAYPRO II, containing all subroutines may be obtained

from the author. Please address requests to:

Major D. W. Theune
P. O. Box 1083
Springfield, Va., USA 22151,

59

APPENDIX A

EXAMPLE INPUT FILE

PROBLEM STATEMENT

minimize 2xl + x, + 3x3 - 2x4 + le5
subject to Xy + Xy = X, + 2x5 = 5
X, + 2x3 + 2x4 + Xg = 9
08X 27, 0% 220, 22X 22 2% 230 2% 23
EXAMPLE INPUT FILE
2 5 number of constraints / number of variables
2 1 1 3 2 < no blank space here >
2 2 1 3 1
3 11 2 2
3 3 3 non-zero problem elements
4 1 -1 2 2
4 3 =2 format:
5 1 2 2 1 / optional
5 3 10 col # / row # / value / row # / value
< blank space required >
les right hand sides
le?9 rhs ¢ / restriction / value
< blank space required >
Xl 4
X2 4
X3 4 variable name / type of bounds
4
4

60

o \...-‘_ -._.-“'. [I - ‘... g SV G TC LY

A N R N L S
T Y A N A

R CACAAE AR AR A NS A A RS REAAR MCLATA S P A Se e 2 e e Tt ahat od od ol DS S 2 r_*rr‘

- < blank space required >
X1l 7

X2 10

X3
X4
X4
X5

L

variable bounds UB = upper or LB = lower
variable name and value

Sy

o +
O
~ g st

88 b&ES

D
23
(]
AL

ARy,
Y
]

P A

.
.
P
- e

(ol

DR

L3

et ot

61

T
et

B AR v ...‘..’."._, e - .

. Ty, - - g~ - - oo W e e m .
v AN AT TR YA Ny * ey e’ o =0 g " S .,,. < . o G
¢ 2 Vw, IS ih e "' S N e Sy) A 'y.‘v!-'\ . \l'- _t ;*) -‘,.‘_ A\.c- ., !31!

APPENDIX B

INTERACTIVE SESSION

CRT SCREEN PRESENTATION 1l:

A>bsexec pét
Exec ver 3.0

DEBUG? # = nao, 1 = yasg
]
Do you wish to: :
(1) input a new problea?
(2) re-run an old problem with sodifications?

. TYPE YOUR CHOICE 1 or 2

“Input the problem nase.

This I'Tllﬂ will be usad whenever the problem is recalled
enter EXACTLY wight characters. CCCCCCCC

SCREEN 2

THIS PROGRAM IS INTENDED TO BUILD A DATA FILE FOR PRESENTATION OF
A LINEAR PROGRAM TO THE PACKABE THESIS.PFI

want to continue type “go” and <enter>.

have already entered your data

i the data file you wish to use has already been created
type “return” and <enter) to return to the sain pragraa.

93

62

~ 4

g
RN
e %

.

AN, §

L Sen gty o

RGNS,

..

XX

e,

10

L"-

X
\
1

oL

P P R NN TR

SCREEN 3

THIS PROGBRAM IS INTERACTIVE:
PROMPTS WILL BE GIVEN AS FOLLOWS:

The first two entries will be the NUMBER OF ROWS and COLUMNS.

Remaining entries will be entered in a modified column input formsat.
° Colusns will be requested in order.
You will enter the current row number of the next non-zero value
and the value associated with that column and row.

Row # / Value // Optional Row # / Value
NOTE::
Current colusn numbers will be provided. If all rows for the current

column have besn entered, type "-1" ¢for tha next row nuaber and the
coluan number will be incresentad.

TYPE ANY CHARACTER and <enter> TO CONTINUE
7

SCREEN 4

INPUT NUMBER OF CONBTRAINT RONS
Do not count the acbjective function!!!!
2

DO NOT COUNT LOGICAL VARIABLES®'!!
DO NOT ENTER LOGICAL VARIABLE COLUMNS:! !¢

DO NOT COUNT THE RIGHT NAND SIDE AS A COLUMN!!!!

INPUT NUMBER OF VARIABLES
and

63

" oY

5 AR TR R Y)

R B Cal R Ty h o S T TR PR PN
AW S PN A SRR LA L L N AN

Ay

XA

v
1)

/
.

EARAAGH " K

o te %

’l.zk w4

VX

AL Sy, Ayt 7 N4 ¥

€

e e R
AT o s &

s |

g {ENUD

Yaas,

LA JAdE 20 S B i S A P S A S M o AR A/ TR T TN TETI TN T AN RS AT AT

P

SCREEN 5

YOU WILL NOW BE ASKED TO ENTER THE NON—-ZERC PROBLEM ELEMENTY.
All entries will bhe entered by coluean.
A RESTRICTED nusber of rows and coluans say be entered.

The first 2 rows of each column represent the non—-objective
rows. All additional rows entered will be treated as additional
objective rows. You will be asked later, which objective function
is to be considered in a given probles solution.

A MAXIMUM OF 18 OBJECTIVE ROWS MAY BE ASSIGNED TO A GIVEN PROBLENM.

SIMILARLY:

The first S coluans will be treated as variables. All remaining

coluans will be assused as independent sets of technological constraints.
You will be asked later, which of these sets is to be considered for

the current problem solution.

TYPE ANY CHARACTER and <enter)> TO CONTINUE

SCREEN 6 (DATA .INPUT)

The following entries may pe placed IN ORDER in any column.
The following restrictions apply:
All row nusbers sust be entered as integers.
All values sust be entered as real numbers as follows;
9.123 or 2.34 or 34.0 . The decimal sust have a preceeding
and a following.nuseral.

ENTER NOM:

Current. column is 1

Type up to S characters to assign variable namse for column 1
 §1 :

Choose appropriate variable bounds for variable X1

Le us

(1 s <= X1 <= infinity
@ -infinity <= X1 (= [
3 X1 unrestricted (FREE)
4) a <= X1 <= b
(S) a <= X1 (= infinity
(&) =infinity <= 4 {m b
TYPE (1 or 207 ... &)
4

WHAT IS THE LOWER BOUND? a = LB.

MHAT 18 THE UPPER BOUND? b = UB.
¥ 4

64

(S

1

TERLRPATYLTYLTR O T T T T T T T T T T

v, LETGIGE Y 4 Sl Wi TR Wil *ad - LY LA IR O TS S0P A N N B e A NG LR
Qr n L% 'h\ V'\ I ~ \ .‘ . q- F NN, & P *\f“ﬁ\:ﬁ"f\f -f‘\ .* ’:\.\ KN -

4

F Y

RENCR A l.v

RA LY

NN

LI P

M S R

R

-

L ot et

LT

BRI AC] A Sl oA Y e

ROW & / VALUE // OPTIONAL ROW & / VALUE
Nagative row to end columsn

1132
Last row entered was ocbjective row # 1
-1

Current column is 2
Type up tao S characters to assign variable nase for columsn 2
X2

Choose appropriate variable bounds for variable X2

LB us
t1) 9 <= X2 <= infinity
(2) -infinity <= X2 <= ']

3 X2 unrestricted (FREE)
4) a <= X2 {= b
1§~ a {= X2 {= infinity
(6) -infinity <= X2 = b
TYPE (1 or 2 0r ... &)
4
WHAT IS THE LOWER BOUND? a = LB.
9
WHAT IS THE UPPER BOUND? b = UB.
19
ROM @ /7 VALUE // OPTIONAL ROW # / VALUE
Negative row to end coluan
2131
Last row entered was objective row & 1
-1

Current colusn is 3
Type up to S characters to assign variable name for column 3
x3

Choose appropriate variable bounds for variable X3

LB uB
(;) 9 <s X3 {= infinity
(2) -infinity <= X3 <= @
(&1 X3 unrestricted (FREE)
4) a <= X3 = b
(¢-)) a {= x3 <= infinity
({Y] =infinity (= X3 <= b

zmuechr... &)
WHAT 18 THE LOWER BOUND? a = LB.

. MHAT IS THE UPPER BOUND? b = Us.
NOW ® / VALUE // OPTIONAL ROW & / VALLE

Negative row to end column

1122

33 -1

Current column is 4

';y‘p. up to S characters to assign variable name for coluan 4

65

Choose appropriate variable bounds for variable X4

LB uB
{1 - J <= X4 <= infinity
2) -infinity <= X4 <= g .
3) X4 unrestricted (FREE)
4) a <= X4 <= b
. 3 a = X4 {= infinity
(6) -infinity <= X4 <= b

TYPE (1 or 2 Or ... &)
4

WHAT IS THE LOWER BOUND? a = LB.
2

WHAT IS THE UPPER BOUND? b = UB.
S . :
ROW & / VALUE // OPTIONAL ROW & / VALUE
Negative row to end column
1 -1 22
3 -2 -1
Currant column is S
Type up to 35 characters to assign variable name for column S
XS

Choose appropriate variable bounds for variable X3

LB uB
(1) [<m X3 <= infinity
(2) -infinity (= X3 {= [
3 XS _unrestricted (FREE)
4) a <= - X3 <= b
(¢-1] a = b & <= infinity
(6) -infinity <= b & <= b

TYPE (1 or 2 Or ... &)
4

WHAT 1S THE LOWER BOUND? a = LB.
WHAT 1S THE UPPER BOUND? b = UB.

ROW ® / VALUE // OPTIONAL ROW @ / VALLE
Negative row to end column

1221

S 18 -1

Current column is RIGHT HAND SIDE # 1

All rows of RIGHT HAND SIDE require an entry.
ENTER type of constraint followad Ly the value of the current RHS.
ZERD VALLUES AS #.8

For RHE @ 1, ROW ® 1
ENTER @ L or E
FOR e (= -

Followad by:
- <SPACE> , valum of RH8 , <RETURN)>..
eSS :

| IR A M A T M RS R A S A i A e R S

:“. .

-
P a

. b

T
2L L S

e
[S I}

[}
)

s
»

.

85 "-“‘-

A

GO

PR |0

]

G
G %

. e
'l-!-

fﬁl

a“.‘:‘. Wy

- -’.

&

For RHS # 1, ROW # 2
ENTER G L or E
FOR >= = =
Followed by: .
<SPACE> , valum of RHS , <RETURND..
e 9

RHS 1 is complete. Do you have another RHS coluan? (Yor N)
(Yor N)

n

Is the objective to be MINimized ! or MAXimized.

ENTER MIN or MAX

ain

Input the integer number of the objective row to be considered.
This integer aust be in the range 1 to 19
1

Input the integer number of the Right Hand Side to be considered.

This integer must be in the range 1 to number of RHS columns.
1

Pagin phase 1
#8sdealing with degeneracy
edealing with degeneracy

Phase] solution complete.

Do you wish to print out all intermediate solutions?
Type any positive integer if YES
nagative integer or @ if NO
@
Begin phase 2
dealing with degeneracy
edeoaling with degeneracy
Snide
Phase Il salution complete:

REINVERSION IN PROGRESS

+8
REINVERSION COMPLETE

Prograa teraination

67

AR S LT AL S T AN O AN e 4 PN e g AL s L el i Sl SR i e At s e

APPENDIX C

EXAMPLE PROBLEM FILE

m,n Constraints, variables

1

1 3 1 This list is produced by
1 2 2 the package and is not
3

fi accessible to the user,.
' -1 2 2

=

fq 2 2 1

1

R 10

W 0 g OO0 Bt 1 & b W W N = N
N NN W KHE WHE WE DR
|
[

c -6 initial basis columns (-) denotes artificials

68

Ll - . \‘ '~. M ." . .A .,-‘ q.‘ .‘ b ." -.“ ST -.
W e T e N

IaC ot It St e i ey s gt st e il il Y SRRV e S o ST S e un e S e S e Sae i k-2 atel Novh sl e -0 bl Sl Al d vv1
W et T T T T e e RN . P L et oY TR S . .. L i
[. . PRI . P PN

APPENDIX D

BTRAN PROCEDURE LISTING

procedure btrang
{produce pricing vector tllil= Ch # Binverse)

var
i, §5 ki: integer;

tj—_; tx: real
LJ begin
- for it= 1 to m do
S begin
' tilfil:= cLjbasicCills
e if (eljbasiclili<o) then t1ll[il:i= -t1{ils
/ i¥ (abs(tlCil)<zl) then tl(il:= O.90}
.}‘- . end} :
ﬁ' if (np <> @ then
.3 begin
o for 1:= np downto 1 do
,, - begin
;F\ . txi= 0.9
o for ki:= kefl] to kell+il-1 do
':E begin
e read(binv, rrn, ki} eta)s
d txs= tx + tlleta.ietal # eta.etas}
b ends
1€ (abs(tx) < z1) then tx:= J.0}
t1CkjC111:= tx}
N . end}
t’?; ends
{3‘ 1§ (debug) then
3:,, . bagin
i writeln(outfiles ’BASIC COST VECTOR’);
- for j:= 1 to & do
" writeln(outfiles t1C3j1,’ °)3
-y ends
e end} {(procedure btran}.
-} .
= 1:
b~

y 69

AR AR R U R S, S o A e

3~ kAR

& Al

e -

0 Al

vy

4

AP

LS,

VLY,

TR

D e
’

s

4yt

I "
SR LY

:

APPENDIX E

OUTPUT LISTING FOR LP PROBLEM SOLVER

Output for problea bounded2
Dealing with degenaracy!
Dealing with degeneracy!

Phase I solution
The probles is sinieize.

Variable Bas:ic ' €31
Namse for initial
Constraint
X1 H 1 '
X2 H 2 o
X3 H g
x4 H o
H @
Row Basic Original
Variable RHS
1. X1 3
2 X2 e9

Value of the objective function

Value

9. 00900000000
0. 0908000008
1. 0900000000
2. 00090000000
3. 980000080800

Slack
Value

Ol "N ACEFO O I L I A i

Reduced
Cost

Dual
Prices

Current value and solution represant tableau for pivot & 2

Dualing with degeneracy! '
Dealing with degeneracy!

70

{

s 07 & e
I

]
4

- .

-

. .
atatall!

PG o, A A ol

o T e T Tl T TR

ol B

Optisal phase II solution :

The problem is ainimize.

Variable Basic Ccrs1l Value

Nase for initial

Constraint
¢ H 2 7 . 9000000008
X2 H 1 1 1. 000003000
X3 H 3 1 . 3500030200
x4 H 2 -2 « 0800000009
XS H 10 §. 0000900000
Row Basic Original Slack
Variable RHS Value

1 X2 eSS 9. 9000000000
2 X4 e9 §.0800000000
Value of the objective function : 12

e s AL M et 4r N i M it s . it oy

Reduced
Cost

2.9000000000
9. 9900000000
3. 2000900000
?. 9000000000
1.0000000000

Dual
Prices

-4, 02000000
-1 . 000000000

Current value and sclution represant tableau for pivot # S

REINVERSION AFTER PIVOT 8 S

ORIy TR "x“"f\

REINVERSION COMPLETE The problem is ainisize.

Variable Basic Ctjil
Name for initial
Constraint
X1 H -
X2 H 2 1
X3 : 3
} £] 2 1 -2
X3 H 10
Row Basic Original
Variable RHS
1 x4 3
2 x2 e°

Value of the objective function

Value

7. 00009000808
1. 0000000090
1.9000000008
3. 9990000008
0. 0000000086

8lack
Value
0. 90900000090
9. 9600060008

$ 12

Raduced
Cost

2.9800000000
0. 0900800000
3. 5000000000
9.8000009000
1.0000000000

Dual
Prices

=4, 0000000000
-1 .0000000000

Qurrent value and solution reapresent tableau for pivat & 2

71

Lt aa S e PSS g

DAL UM N L St Al i SESERDAENMACAE AL Nl Sl G oDl A Sl B Sl e o

)

."‘p

-

'

ﬁj

{ LIST OF REFERENCES

2 |

kﬁ* 1. Dantzig, G. B., Linear Programming and Extensions,
ﬂ R Princeton University Press, 1963.

" 2. Hellerman, E. and Rarick, D., "Reinversion with the
N Preassigned Pivot Procedure," Mathematical Programming,
g V. 1, Pp. 195-216, 1971.

3. Bland, R. G., "New Finite Pivoting Rules for the
Simplex Method," Mathematics of Operations Research,
V. 2, No. 2, Pp. 103-107, May 1977.

4. Luenberger, D. G., Introduction to Linear and Nonlinear
Programming, Addison-Wesley, 1973.

5. Orcharh-Hays, W., Advanced Linear-Programming Computing
Techniques, McGraw-Hill, 1968.

B 6. Murtagh, B. A., Advanced Linear Programming: Computation
and Practice,'McGraw-HiII, 1981.

7. Avis, D. and Chvatal, V., "Notes on Bland's Pivoting
e Rule,” Mathematical Programming Study, V. 8, Pp. 24-34,
% 1978.

lq 8. Dewald, L. (Private Communication, September 1983).

9. Markowitz, H. N., "The Elimination Form of the Inverse
and Its Application to Linear Programming," Management

10. Jensen, K. and Wirth, N., Pascal User's Manual and
Report, Springer-Verlag, 197e.

N 11. JRT Systems, JRT Pascal User's Guide, JRT Systems,
7,
4)* 1983'

.2’})‘4
5] -
Iy -
ity
JL
}%
i .
4
ld.i

g 72

LT TS
LN LT N Lt et

R TR PG

B RO N

e e At At e e
Y ~ -
IS .

SIS

IR RN W L L WM S BN Mt N SN A IR
HONE R D G S o R A S YA TR

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314

Library, Code 0142
Naval Postgraduate School
Monterey, California 93943

Department Chairman, Code 55
Department of Operations Research
Naval Postgraduate School
Monterey, California 93943

Professor Gerald G. Brown, Code 55Bw
Department of Operations Research
Naval Postgraduate School

Monterey, California 93943

Professor R. Kevin Wood, Code 55Wd
Department of Operations Research
Naval Postgraduate School
Monterey, California 93943

Professor Lawrence Bodin
BMGT

University of Maryland
College Park, MD 20742

MAJOR Donald W. Theune
10702 Fred's Oak Court
Burke, VA 22015

Headquarters United States Marine Corps

Code RDRS-40 '
Washington, D.C. 20380

73

0{'& :. o

No. Copies

2

20

q. e
) PR \‘.\l‘\m‘

